Stainless steel is a versatile material comprised of a steel alloy and a small percentage of chromium — the addition of chromium adds to the material’s corrosion resistance, a trait that earned stainless steel its name. Because stainless steel is also low-maintenance, oxidation resistant, and doesn’t affect other metals it comes in contact with, it is frequently used in a large array of applications, especially in piping and tubing manufacturing.
Stainless Steel Pipe
Stainless steel pipe is one of the more standardized materials in the building and engineering industries.Stainless steel tube
Stainless steel tube is typically measured by its outer diameter and can be used in a variety of applications including a number of structural applications.Seamless stainless steel pipe
A seamless pipe, as the name suggests, is a pipe without a seam or a weld-joint.Stainless Steel welded pipe
Our supply of stainless steel square tube and rectangular tube offerings are available in a wide variety of sizes and wall thicknesses.Heat resistant stainless steel pipe
The auction is for 6 metre length of prime quality grade 409 stainless steel tubing with a 1.2mm wall thickness x 38.1mm (1 1/2") diameter.Stainless steel oval pipe
Stainless steel oval tube offered in grades 304 and 316 in a wide choice of sizes.Stainless square / rectangular Tubes
Our supply of stainless steel square tube and rectangular tube offerings are available in a wide variety of sizes and wall thicknesses.Bright annealing tube
Bright annealing tube under a reducing atmosphere or in a vacuum protection...Stainless heat exchanger tube
Stainless heat exchanger tube in an extensive range of austenitic stainless steels, duplex stainless steelsStainless steel fin tube
Stainless Steel Fin Tubes are processed out of various Grades of both Seamless and Welded Plain Tubes.Stainless carbon steel composite pipe
The stainless carbon steel composite pipe is made of stainless steel and carbon structural steel.Material stainless steel grades
Also known as "marine grade" stainless steel due to its increased ability to resist saltwater corrosion compared to type 304. SS316 is often used for building nuclear reprocessing plants.
304/304L Stainless Steel
304 Stainless is a low carbon (0.08% max) version of basic 18-8 also known as 302. Type 302 has 18% chromium and 8% nickel.316/316L Stainless Steel
Type 316/316L Stainless Steel is a molybdenum steel possessing improved resistance to pitting by solutions containing chlorides and other halides.310S Stainless Steel
310S Stainless Steel has excellent resistance to oxidation under constant temperatures to 2000°F.317L Stainless Steel
317L is a molybdenum bearing austenitic chromium nickel steel similar to type 316, except the alloy content in 317L is somewhat higher.321/321H Stainless Steel
Type 321 is basic type 304 modified by adding titanium in an amount at least 5 times the carbon plus nitrogen contents.410 Stainless Steel
Type 410 is a martensitic stainless steel which is magnetic, resists corrosion in mild environents and has fairly good ductility.SA 269
ASTM A269 / A269M Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General ServiceSA 249 Stainless Steel
ASME SA 249 Standard Specification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes.904L Stainless steel
904L stainless steel consists of chromium, nickel, molybdenum and copper contents, these elements give type 904L stainless steel excellent propertiesDuplex pipes
What is Duplex Stainless Steel?
Duplex Stainless Steel is a type of steel containing the high amount of chromium and minimum amount of nickel. It provides great strength and resistance to corrosive environments.
Duplex 2205 (UNS S31803)
Duplex 2205 (UNS S31803), or Avesta Sheffield 2205 is a ferritic-austenitic stainless steel.Duplex 2507 (UNS S32750)
Duplex 2507 (UNS S32750) is a super duplex stainless steel with 25% chromium, 4% molybdenum..DUPLEX UNS S32760
UNS S32760 is described as a super duplex stainless with a microstructure of 50:50 austenite and ferrite.- Standards for stainless steel seamless tube & pipe
- History of stainless steel
- Types of stainless steel
- The main elements in stainless steel
- ANSI Standards Stainless Steel Pipe Specs
- ANSI Standard Stainless Steel Pipe Chart
- Carbon steel fittings VS. stainless fittings
- Stainless steel seamless pipe solution treatment effect
- Stainless Steel Tube Bright Annealing
- Stainless steel number comparision
- Usage characteristics of thin-walled galvanized stainless steel tube
- Stainless steel welding technical requirements and quality assurance measures
- Stainless steel of tube number comparision between china and international
- Stainless steel seamless pipe crack detection method
Comparison table of stainless steel brands of various countries
In order to solve the cumbersome and difficult to remember stainless steel grades, improve the practicability of the brand representation, and the contrast with the international standard grades, China has formulated the "Universal Code System for Steel and Alloy Grades", such as 06Cr19Ni10, corresponding to 304. Different grades of stainless steel have different ingredients, but they all have a national standard. The standards of each country are also different.
The specific standards of each country are as follows:
No | China,GB | Japan | American | Korea | EUR | Indai | Australia | Tai Wan | ||
---|---|---|---|---|---|---|---|---|---|---|
Old | New(07.10) | JIS | ASTM | UNS | KS | BS EN | IS | IS | CNS | |
Austenitic stainless steel | ||||||||||
1 | 1Cr17Mn6Ni5N | 12Cr17Mn6Ni5N | SUS201 | 201 | S20100 | STS201 | 1.4372 | 10Cr17Mn6Ni4N20 | 201-2 | 201 |
2 | 1Cr18Mn8Ni5N | 12Cr18Mn9Ni5N | SUS202 | 202 | S20200 | STS202 | 1.4373 | - | 202 | |
3 | 1Cr17Ni7 | 12Cr17Ni7 | SUS301 | 301 | S30100 | STS301 | 1.4319 | 10Cr17Ni7 | 301 | 301 |
4 | 0Cr18Ni9 | 06Cr19Ni10 | SUS304 | 304 | S30400 | STS304 | 1.4301 | 07Cr18Ni9 | 304 | 304 |
5 | 00Cr19Ni10 | 022Cr19Ni10 | SUS304L | 304L | S30403 | STS304L | 1.4306 | 02Cr18Ni11 | 304L | 304L |
6 | 0Cr19Ni9N | 06Cr19Ni10N | SUS304N1 | 304N | S30451 | STS304N1 | 1.4315 | - | 304N1 | 304N1 |
7 | 0Cr19Ni10NbN | 06Cr19Ni9NbN | SUS304N2 | XM21 | S30452 | STS304N2 | - | - | 304N2 | 304N2 |
8 | 00Cr18Ni10N | 022Cr19Ni10N | SUS304LN | 304LN | S30453 | STS304LN | - | - | 304LN | 304LN |
9 | 1Cr18Ni12 | 10Cr18Ni12 | SUS305 | 305 | S30500 | STS305 | 1.4303 | - | 305 | 305 |
10 | 0Cr23Ni13 | 06Cr23Ni13 | SUS309S | 309S | S30908 | STS309S | 1.4833 | - | 309S | 309S |
11 | 0Cr25Ni20 | 06Cr25Ni20 | SUS310S | 310S | S31008 | STS310S | 1.4845 | - | 310S | 310S |
12 | 0Cr17Ni12Mo2 | 06Cr17Ni12Mo2 | SUS316 | 316 | S31600 | STS316 | 1.4401 | 04Cr17Ni12Mo2 | 316 | 316 |
13 | 0Cr18Ni12Mo3Ti | 06Cr17Ni12Mo2Ti | SUS316Ti | 316Ti | S31635 | - | 1.4571 | 04Cr17Ni12MoTi20 | 316Ti | 316Ti |
14 | 00Cr17Ni14Mo2 | 022Cr17Ni12Mo2 | SUS316L | 316L | S31603 | STS316L | 1.4404 | -02Cr17Ni12Mo2 | 316L | 316L |
15 | 0Cr17Ni12Mo2N | 06Cr17Ni12Mo2N | SUS316N | 316N | S31651 | STS316N | - | - | 316N | 316N |
16 | 00Cr17Ni13Mo2N | 022Cr17Ni13Mo2N | SUS316LN | 316LN | S31653 | STS316LN | 1.4429 | - | 316LN | 316LN |
17 | 0Cr18Ni12Mo2Cu2 | 06Cr18Ni12Mo2Cu2 | SUS316J1 | - | - | STS316J1 | - | - | 316J1 | 316J1 |
18 | 00Cr18Ni14Mo2Cu2 | 022Cr18Ni14Mo2Cu2 | SUS316J1L | - | - | STS316J1L | - | - | - | 316J1L |
19 | 0Cr19Ni13Mo3 | 06Cr19Ni13Mo3 | SUS317 | 317 | S31700 | STS317 | - | - | 317 | 317 |
20 | 00Cr19Ni13Mo3 | 022Cr19Ni13Mo3 | SUS317L | 317L | S31703 | STS317L | 1.4438 | - | 317L | 317L |
21 | 0Cr18Ni10Ti | 06Cr18Ni11Ti | SUS321 | 321 | S32100 | STS321 | 1.4541 | 04Cr18Ni10Ti20 | 321 | 321 |
22 | 0Cr18Ni11Nb | 06Cr18Ni11Nb | SUS347 | 347 | S34700 | STS347 | 1.455 | 04Cr18Ni10Nb40 | 347 | 347 |
Austenitic ferritic stainless steel (duplex stainless steel) | ||||||||||
23 | 0Cr26Ni5Mo2 | - | SUS329J1 | 329 | S32900 | STS329J1 | 1.4477 | - | 329J1 | 329J1 |
24 | 00Cr18Ni5Mo3Si2 | 022Cr19Ni5Mo3Si2N | SUS329J3L | - | S31803 | STS329J3L | 1.4462 | - | 329J3L | 329J3L |
0Cr18Ni10Ti Iron type stainless steel | ||||||||||
25 | 0Crl3Al | 06Crl3Al | SUS405 | 405 | S40500 | STS405 | 1.4002 | 04Cr13 | 405 | 405 |
26 | - | 022Cr11Ti | SUH409 | 409 | S40900 | STS409 | 1.4512 | - | 409L | 409L |
27 | 00Cr12 | 022Cr12 | SUS410L | - | - | STS410L | - | - | 410L | 410L |
28 | 1Cr17 | 10Cr17 | SUS430 | 430 | S43000 | STS430 | 1.4016 | 05Cr17 | 430 | 430 |
29 | 1Cr17Mo | 10Cr17Mo | SUS434 | 434 | S43400 | STS434 | 1.4113 | - | 434 | 434 |
30 | - | 022Cr18NbTi | - | - | S43940 | - | 1.4509 | - | 439 | 439 |
31 | 00Cr18Mo2 | 019Cr19Mo2NbTi | SUS444 | 444 | S44400 | STS444 | 1.4521 | - | 444 | 444 |
Martensitic stainless steel | ||||||||||
32 | 1Cr12 | 12Cr12 | SUS403 | 403 | S40300 | STS403 | - | - | 403 | 403 |
33 | 1Cr13 | 12Cr13 | SUS410 | 410 | S41000 | STS410 | 1.4006 | 12Cr13 | 410 | 410 |
34 | 2Cr13 | 20Cr13 | SUS420J1 | 420 | S42000 | STS420J1 | 1.4021 | 20Cr13 | 420 | 420J1 |
35 | 3Cr13 | 30Cr13 | SUS420J2 | - | - | STS420J2 | 1.4028 | 30 Cr13 | 420J2 | 420J2 |
36 | 7Cr17 | 68Cr17 | SUS440A | 440A | S44002 | STS440A | - | - | 440A | 440A |
Stainless Steel Tube & Pipe Tolerance
In the production process, because the actual size is difficult to meet the nominal pipe size requirement, that is, it is often larger or smaller than the nominal size, so the standard stipulates that there is a difference between the actual size and the nominal size of the stainless steel pipe. A positive difference is called a positive deviation, and a negative difference is called a negative deviation.
Outside diameter (OD), wall thickness and length are three basic parameters in the process of manufacture and distribution for stainless steel tube & pipe, and these parameters have been standardized.
Outer diameter and wall thickness are particularly important, they are not only the basic support for meeting the design requirements of various types of applications such as strength, stiffness and fluid delivery, but also have a decisive influence on the subsequent processing, therefore, standards for stainless steel tube & pipe diameter and wall thickness of the manufacturing accuracy (tolerance) should been standardized.
What is Nominal Pipe Size and Actual Pipe Size
A. Nominal Pipe size: It is the nominal size specified in the standard such ASME B36.10m, ASME B36.19m, the ideal size that users and manufacturers hope to obtain, and the order size specified in the contract.
B. Actual Pipe size: It is the actual size obtained during the production process, which is often larger or smaller than the nominal size. This phenomenon of being larger or smaller than the nominal size is called deviation.
European Standard
European stainless steel tube & pipe standards specify 4 classes outer diameter and wall thickness in percentage or absolute value on the basis of nominal dimension.
Generally, larger diameter or heavy wall thickness stainless steel pipe use percentage, small diameter or thin wall thickness stainless steel tube use absolute value.
From D1 to D4 class for outer diameter, and T1 to T4 for wall thickness tolerance comply to DIN EN ISO 1127 standard, stainless steel tubes – Dimensions, tolerances and conventional masses per unit length.
Outside Diameter | Wall Thickness | ||
---|---|---|---|
Class | Tolerance | Class | Tolerance |
D1 | ±1.5%, Or ±0.75 Mm Min. | T1 | ±15%, Or ±0.6 Mm Min. |
D2 | ±1.0%, Or ±0.5 Mm Min. | T2 | ±12.5%, Or ±0.4 Mm Min. |
D3 | ±0.75%, Or. ±0.3 Mm Min. | T3 | ±10%, Or ±0.2 Mm Min. |
D4 | ±0.50%, Or ±0.1 Mm Min. | T4 | ±7.5%, Or ±0.15 Mm Min. |
T5 | +/- 5.0 %, Or +/- 0.10 Mm Min. |
The tolerances on outside diameter and thickness from above table, greater value shall be selected.
EN 10312 has specific values in table series 1 and series 2.
America Standard
America standard has two standard rules to specify outside diameter and thickness, ASTM A999 / A999M and A1016 / A1016M.
ASTM A999 | ASTM A1016 |
|
|
But A511 for seamless stainless steel mechanical tubing and A554 welded stainless steel mechanical tubing not conform to above standards, they have separate outside diameter and thickness tolerances.
Standard | Manufacturing & delivery condition | Outside Diameter OD / mm | OD tolerance mm | Thickness T / mm | T tolerance mm | |
---|---|---|---|---|---|---|
Minimum | Average | |||||
ASTM A1016 A1016M | Hot drawn seamless tubes | <=100 | +0.4, -0.8 | <=2.4 | +0.4t, 0 | |
100 – 200 | +0.4, -1.2 | 2.4 – 3.8 | +0.35t, 0 | |||
200 – 225 | +0.4, -1.6 | 3.8 – 4.6 | +0.33t, 0 | |||
>=4.6 | +0.28t, 0 | |||||
Cold drawn seamless tubes | <25 | +0.1, -0.11 | +0.20t, 0 | +/-0.10t | ||
25 – 40 | ||||||
40 – 50 | +/-0.2 | +0.22t, 0 | +/-0.10t | |||
50 – 65 | +/-0.25 | |||||
65 – 75 | +/-0.3 | |||||
75 – 100 | +/-0.38 | |||||
100 – 200 | +/-0.38, -0.04 | |||||
200 – 250 | +/-0.38, -1.14 | |||||
Welded tubes | 40 – 50 | +/-0.2 | +0.18t, 0 | +/-0.10t | ||
50 – 65 | +/-0.25 | |||||
65 – 75 | +/-0.3 | |||||
75 – 100 | +/-0.38 | |||||
100 – 200 | +/-0.38, -0.04 | |||||
200 – 250 | +/-0.38, -1.14 | |||||
ASTM A999 / M | Seamless tubes and welded tubes | <48.3 | +0.4, -0.8 | -0.125t | ||
ASTM A312 / M | Seamless tubes and welded tubes | 48.3-114.3 | +/-0.8 | OD=10.3-73 | +0.20 t, -125t | |
168.3-219.1 | +1.6, -0.8 | t/OD<=5% OD=88.9-457.2 | +0.225 t, -125t | |||
219.1-457.2 | +2.4, -0.8 | t/OD>5% OD=88.9-457.2 | +0.15 t, -125t | |||
Welded tubes | 508-660 | +3.2, -0.8 | OD>=508 | +0.175 t,-0.125 t | ||
711-864 | +4.0, -0.8 | t/OD<=5%, OD>=508 | +0.225 t,-0.125 t | |||
Seamless tubes | 914-1209 | +4.8, -0.8 | t/OD>5%, OD>=508 | +0.15 t, -125t | ||
ASTM A409 / M | Welded tubes | +/-0.2% | T<4.8 | |||
+/-0.4% | t>=4.8 | |||||
ASTM A358 / M | Welded tubes | +/-0.50% | ||||
ASTM A511 | Seamless tubing | <=12.7 | +/-0.1 | +/-0.15t | ||
12.7-38.1 | +/-0.2 | +/-0.10t | ||||
38.1-88.9 | +/-0.3 | |||||
88.9-139.7 | +/-0.4 | |||||
139.7-203.1 | +/-0.8 | |||||
203.1-220 | +/-1.1 | |||||
220-325 | +/-1.6 |
American standard outside diameter tolerance mainly used to represent the absolute value, over and below tolerances are often asymmetric, SS tube and pipe in American standard average tolerance can reach even higher than D4 class in EN ISO 1127 standard.
Wall thickness tolerance should be +/-10%t or better, and average thickness tolerance should be ( +/-20 – 22%t, 0 ), pipeline pipe has a larger tolerance, hot finished seamless pipe largest.
China Standards
China has more quantity standards compared to European standards, but less than american standards, SS tube and pipe standards are similar with EU standards in system, and absorb favorable experience in USA specifications.
Specification | Manufacturing | O.D(Mm) | O.D Tolerance | W.T(Mm) | W.T Tolerance | |
GB13296 | Cold Rolled Seamless Pipe | 6-30 | ±0.15/-0.2 | 1-3 | +20% | -0% |
>30-50 | ±0.3 | >3 | +22% | -0% | ||
>50 | ±0.75% | Also Average Wall | ||||
GB/T14976 | Cold Rolled Seamless Tube | 6-10 | ±0.15 | 1-3 | +12.5% | -12.5% |
10-30 | ±0.2 | >3 | +12.5% | -10% | ||
30-50 | ±0.3 | Average Wall, +22% | ||||
>50 | ±0.8% |
Standard Comparison
Stainless steel tube & pipe wall thickness tolerance are the same as the general accuracy of American ASTM / ASME and EU standards, but slightly lower than the high requirements of the EU standards.
Stainless steel tube & pipe outer diameter tolerances are mostly lower than American standards, and approaching the EU standards. it is more reasonable that the American standard specify the OD tolerance is tight, compared to thickness tolerance.
China GB standards and EU standard have no weight tolerance specified, seamless tube & pipe in GB standard delivery goods as actual weight or theoretical weight, welded tube & pipe as theoretical weight or actual weight.
Out Of Roundness
Out of roundness, sometimes referred to as ovality is tube or pipe on the same cross-section of the outer diameter, roundness or ovality is difference between the maximum and minimum dimensions of outside diameter, is carefully measured the high and low points at any one section of the tube or pipe.
Eccentricity
Concentricity or eccentricity refers to tube & pipe wall thickness variations, if need a high precision in tube tolerance, or fit into other tube or parts, which need a good concentricity.
Concentricity be contained wall thickness tolerance specified in EU standard, and just specified in ASTM A1016/M OD≥50 mm and t≥5.6 mm thick wall stainless steel tube the same cross section thickness varieties.
For seamless tube,
WTmax – WTmin ≤ ±10% (WTmax + WTmin) / 2
For welded tube,
WTmax – WTmin ≤ 5% (WTmax + WTmin) / 2
Straightness
Standard pipes and tubes are supplied straightened to the eye: for special applications the permissible deviation from the straight line may be agreed between purchaser and tube manufacturer; the maximum permissible deviation from the straight line related to the length of measurement L is to be indicated, e.g. 1mm/1000mm.
For example:
Length of stainless steel pipe and tube
Delivery length is also called the length required by the user or the length of the order. The standard has the following regulations on delivery length:
A. Normal length / Random Length (also called non-fixed-length length): Any stainless steel tube whose length is within the length range specified by the standard and has no fixed length requirement is called normal length. For example, the structural stainless steel pipe standard stipulates: hot-rolled (extruded, expanded) steel pipe 3000mm - 12000mm; cold drawn (rolled) steel pipe 2000mm - 10500mm.
B. Fixed Length: The fixed-length should be within the usual length range, which is a certain fixed-length dimension required in the contract. However, it is impossible to cut out the absolute fixed-length length in actual operation, so the standard stipulates the allowable positive deviation value for the fixed-length length.
Take the structural stainless steel pipe standard as:
The yield rate of production of fixed-length pipes is much lower than that of normal-length pipes, and it is reasonable for manufacturers to request price increases. The rate of price increase varies from company to company. Generally, the price increase is about 10% on the basis of the base price.
C. Length of double ruler: The length of the double ruler should be within the usual length. The contract should indicate the length of the single ruler and the multiples of the total length (for example, 3000mm×3, which is 3 multiples of 3000mm, and the total length is 9000mm). In actual operation, the allowable positive deviation of 20mm should be added to the total length, plus a margin for the incision of each single ruler length. Take the structural pipe as an example, the allowance for cutting is stipulated: 5-10mm for outer diameter ≤159mm; 10-15mm for outer diameter >159mm.
If there is no double-length deviation and cutting allowance in the standard, it should be negotiated by the supplier and the buyer and indicated in the contract. The double-length scale is the same as the fixed-length length, which will bring about a substantial reduction in the yield rate of the manufacturer. Therefore, it is reasonable for the manufacturer to raise the price, and the price increase is basically the same as the fixed-length length.
D. Range length: The range length of the stainless steel pipe is within the usual length range. When the user requires a fixed range length, it must be indicated in the contract.
For example: Usually the length is 3000-12000mm, and the range cut-to-length length is 6000-8000mm or 8000-10000mm.
It can be seen that the range length is looser than the fixed-length and double-length length, but it is much stricter than the usual length, which will also reduce the yield of production enterprises. Therefore, it is reasonable for the manufacturer to raise the price, and the price increase is generally about 4% above the base price.
Stainless Steel Density
Stainless steel density refers to substance mass per unit volume, it is one of typical property of stainless steel, commonly, density of stainless steel range from 7600 kg/m3 to 8000 kg/m3.
Stainless steel is a wide used material, containing at least 10.5% of Chromium, and other elements added to form stainless steel structure, these elements have Carbon, Silicon, Manganese, Phosphorus, Sulfur, Nickel, Molybdenum, Titanium and Copper, it is noted as high strength and excellent corrosion resistance.
Densities change depending on these alloy elements changing, different alloy content have different density value, even it is the same grade, it is difficult to calculate accurate density values, theoretic density value is given below for reference.
The following is the comparison of several commonly used stainless steel density, data may not be completely accurate, only for reference.
- Material 201, 202, 301, 302, 304, 304L, 305, 321
- Density 7.93 7.93 7.93 7.93 7.93 7.93 7.93 7.93
Stainless Steel Density Table Chart
Grade | Density ( G / Cm3 ) | Density ( Kg / M3 ) |
---|---|---|
201 202 301 302 303 304 304L 304LN 305 321 | 7.93 | 7930 |
309S 310S 316 316L 316Ti 316LN 317 317L 347 | 7.98 | 7980 |
904L | 7.98 | 7980 |
2205 S31803 | 7.80 | 7800 |
S32750 | 7.85 | 7850 |
403 410 410S 416 431 | 7.75 | 7750 |
440A | 7.74 | 7740 |
440C | 7.62 | 7620 |
420 | 7.73 | 7730 |
439 430 430F | 7.70 | 7700 |
434 | 7.74 | 7740 |
444 | 7.75 | 7750 |
405 | 7.72 | 7720 |
*These densities given at standard conditions for temperature and pressure condition.
304 And 316 Stainless Steel Densities
304 and 316 are the most used stainless steel grades, their densities are not the same, this decide by chemical composition and content, stainless steel 304 density is 7930 kg / m3, 316 density is 7980 kg / m3, so when calculating stainless steel weight, it is different between 304 and 316 stainless steel.
Stainless Steel Density Conversion, Kg/M3, G/Cm3 And Lbs/In3
Density of stainless steel calculated by dividing the mass by the volume, usually measured in g/cm3, kg/m3, and lbs/in3, each unit can be converted to other units.
Conversion: 1 kg/m3 = 0.001 g/cm3 = 1000 g/m3 = 0.000036127292 lbs/in3.
Density Relations With Temperature And Pressure
Densities of stainless steel vary by changing either the temperature or the pressure, in general, increasing the temperature decreases the density, increasing the pressure always increases the density.
Difference Between Seamless And Welded Tube & Pipe
Seamless and welded are mainly two types stainless steel tube & stainless steel pipe, there is a debate whether seamless is better than welded for a long time.
Although with improved metallurgy and welding processes in welded tubes, the arguments typically focus on structural integrity and corrosion resistance in weld area.
Obviously, seamless and welded tubes & pipes difference is manufacturing process.
There are some cases where paying extra for a different, higher-performing alloy is necessary.
Welded Tube Manufacturing Process
Depending on the outer dimension, wall thickness and final application, there are different ways of manufacturing welded tubes and pipes, and different manufacturing method.
Strip Welded Tubes & Pipes
Welded tube start from stainless steel strip and coil that is passed through grooved rollers till the shape is formed and the free edges are properly shaped for welding, cold forming is performed step by step from flat strip into a round profile, the edges are welded together as they approach the welding rolls.
Typical welding method for strip welded tubes is traditionally autogenous tungsten inert gas (TIG), TIG welding method have some advantages that can effectively protect weld seam.
After welding outside and inside grinding of the weld seam, solution annealing or stress relieving may be necessary by application requirements.
- Coil
- Inspection and analysis
- Slitting
- Auto-welding
- Seam-grinding
- Solution treatment
- Cut to length
- Straightening
- Picking
- End-facing
- Eddy current test
- Hydrostatic test
- Final inspection
- Marking
- Packing
- Shipping
Today, most of the modern welding lines are equipped with inline induction annealing, then straitening and calibration to control dimension of tube & pipe, cut to standard or special lengths, de-burred, NPD & DT testing and inspection should be carried out as standard or requirement.
Heavy Wall Tubes & Pipes
When large outside diameter or heavy wall or both welded tubes & pipes required, there is a different welding method and process, for large diameter and heavy wall pipes, EFW, ERW and other welding methods can be used.
Starting from stainless steel plate or sheet, the forming is done in a roller bending machine or in a hydraulic press, then some steps are same with strip welded tubes.
- Plate
- Inspection
- Plasma-cutting
- Edging
- Bending
- Seam cleaning
- Forming
- Auto- welding
- Degreasing
- Anneaspanng
- Roundness caspanbrating
- End-facing
- Eddy current test
- Hydrostatic test
- Final inspection
- Marking
- Packing
- Shipping
For testing and inspection, large diameter sizes, radiography test (RT) and hydrostatic test (HT) are often required.
For large diameter welded pipes, double welding method can be accepted.
Seamless Tube Manufacturing Process
Seamless tubes are generally made in complex steps starting with the drilled hollows from billets, by cold drawing and cold rolling manufacturing process with cold drawing & cold rolling machines.
Stainless steel pipe polishing
Stainless steel pipe doesn't look all shiny and new right off the welding line. In fact, it looks burnt and kind of charred. Polishing it will give it that mirror finish (or satin silver finish) that makes it such an attractive accessory. Stainless steel pipe polishing is an important process for manufactures and architectural applications. Polishing stainless steel pipes creates a uniform and consistent surface finish–vital for tank manufactures and OEMs supplying products to the chemical and pharmaceutical industries.
Heat treating & Annealing
Stainless steel pipe annealing is an important production process and the heat treatment is mostly carried out under controlled conditions to avoid carburization, decarburization and scaling on the metal surface. Stainless steel pipe annealing is a solution treatment employed for recrystallizing the work-hardened austenitic stainless steels and drawing chromium carbides. In addition, stainless steel pipe annealing removes stresses occurred during sold-working, and homogenizes dendritic stainless steel welds.
Stainless steel tube bending
We bend pipe and tube to your specification using our high precision machinery. 18 years of expertise in producing high quality bends with tight bend radius. We can bend tube and pipe at most diameters from 25 mm to 76 mm diameter in a wide range of materials including mild steel, stainless steel and others up to 6-meter lengths.
Range of application
Stainless steel pipe (tube) has excellent characteristics of corrosion resistance and smooth finishing. Stainless steel pipe (tube) is commonly used in demanding equipment like automobiles, food processing, water treatment facilities, oil and gas processing, refinery and petrochemicals, breweries and energy industries.
Considering the importance of outside and inside surface of stainless steel tubes for fluid power industry, Our mills are providing tubes that are free from scale, rust, seams, laps.
Stainless steel pipe (tube) has excellent characteristics of corrosion resistance and smooth finishing. Stainless steel pipe (tube) is commonly used in demanding equipment like automobiles, food processing, water treatment facilities, oil and gas processing, refinery and petrochemicals, breweries and energy industries.
The stainless steel tubing that is supplied by SunnySteel can used in a variety of industries, including:
- Machinery Parts
- Pharmaceutical
- Biotechnology
- Automotive
- Oil and Gas
- Marine
- Food and Beverage Processing
- Construction
- Automotive industries
- Food processing
- Water treatment facilities
- Breweries and energy industries
The main requirement for stainless steels is that they should be corrosion resistant for a specified application or environment. The selection of a particular "type" and "grade" of stainless steel must initially meet the corrosion resistance requirements.
Additional mechanical or physical properties may also need to be considered to achieve the overall service performance requirements.
Tech & Grade for Stainless steel:
Stainless steel is one of the more standardized materials in the building and engineering industries.
- Standard for stainless products
- China number VS. International
- ANSI Standards Stainless Steel
- ANSI Stainless Pipe Chart
- 304/304L Stainless Steel
- 316/316L Stainless Steel
- 310S Stainless Steel
- 317L Stainless Steel
- 321/321H Stainless Steel
- 410 Stainless Steel
- Duplex 2205 (UNS S31803)
- Austenitic Stainless Steel
- ASTM A511 Standard Specification
- 部分不锈钢化学成分对比表
- 不锈钢的性能与组织
- Packing stainless pipes
- History of stainless steel
- Types of stainless steel
- The main elements in stainless steel
- Carbon steel fittings VS. stainless fittings
- Usage of thin-walled galvanized stainless tube
- Stainless welding technical requirements and...
- Corrosion resistance of stainless steel
- Stainless seamless pipe crack detection
- Stainless steel flexible multiple tube
- Stainless pipe solution treatment effect
- Stainless Steel Tube Bright Annealing
- Stainless steel number comparision
- Stainless Steel Heat Exchangers
Comments